隨著人工智慧(AI)、高效能運算(HPC)、5G 通訊和物聯網(IoT)等應用的快速發展,傳統的摩爾定律(Moore’s Law)已趨於飽和,使得透過平面微縮提升性能的方式面臨物理極限,而 3D IC 技術則通過垂直堆疊多個晶片或晶圓,成功突破這一瓶頸,實現更高的運算效能、更低的功耗,並推動系統整合的緊密化。
3D IC 使半導體邁向高頻寬與低功耗時代
與傳統的 2D IC 相比,3D IC 能顯著縮短晶片內部與晶片間的互連距離,大幅降低寄生電阻與寄生電容,進而提升訊號傳輸速度,減少功率損耗並提升整體頻寬,使其成為高頻寬記憶體(HBM)、AI 加速器,以及數據中心等應用的理想選擇。此外 3D IC 技術還能促進異質整合,使不同製程節點、不同材料甚至不同功能的元件能夠在單一封裝內協同運作,例如將處理器(CPU/GPU)、記憶體(DRAM)、射頻(RF)與感測器(Sensors)等異質晶片整合於一個緊湊的封裝內,不僅提升系統性能,還能改善成本與提升設計彈性 [1][2]。
[1] R. Reif, A. Fan, Kuan-Neng Chen, and S. Das, “Fabrication technologies for three-dimensional integrated circuits," Proceedings International Symposium on Quality Electronic Design, San Jose, CA, USA, 2002, pp. 33-37, doi: 10.1109/ISQED.2002.996687.
[2] V. Chidambaram et al., “Dielectric Materials Characterization for Hybrid Bonding,” Proc. IEEE 71st Electronic Components and Technology Conference (ECTC), 2021, pp. 426-428. DOI: 10.1109/ECTC32696.2021.00078.
[3] K. N. Chen, A. Fan, C. S. Tan, and R. Reif, “Microstructure Evolution and Abnormal Grain Growth During Copper Wafer Bonding," Applied Physics Letters, vol. 81, no. 20, pp. 3774-3776, 2002.
[4] T. Fukushima, T. Tanaka, and M. Koyanagi, “Three-Dimensional Integration Technology with Through-Silicon Vias and Microbumps," Japanese Journal of Applied Physics, vol. 47, no. 4S, pp. 2801-2808, Apr. 2008.
[5] C. S. Tan, K. N. Chen, and S. J. Koester, “Wafer-Level 3-D Integration Technology," IEEE Transactions on Electron Devices, vol. 55, no. 3, pp. 1003-1010, Mar. 2008.
[6] K. N. Chen, “Advances in Low-Temperature Cu-to-Cu Direct Bonding," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 7, no. 4, pp. 557-567, Apr. 2017.
[7] B. Zhang, F. Niklaus, G. Stemme, and E. Beyne, “Scaling Cu/SiCN Wafer-to-Wafer Hybrid Bonding Down to 400 nm Interconnect Pitch," IEEE 74th Electronic Components and Technology Conference (ECTC), Denver, CO, USA, 2024, pp. 312-318.
[8] M. Motoyoshi, “Through-Silicon Via (TSV)," Proceedings of the IEEE, vol. 97, no. 1, pp. 43-48, Jan. 2009.
[9] E. Beyne, “3D System Integration: Hybrid Bonding and Beyond," IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, Dec. 2019, pp. 676-679.
[10] Kuan-Neng Chen, Andy Fan, and Rafael Reif, “Microstructure Examination of Copper Wafer Bonding," Journal of Electronic Materials, 30, pp 331- 335, 2001.
[11] K. N. Chen, A. Fan, C. S. Tan and R. Reif, “Microstructure evolution and abnormal grain growth during copper wafer bonding,” Applied Physics Letters, 81(20), pp 3774-3776, 2002.
[12] K. N. Chen, A. Fan, C. S. Tan, and R. Reif, “Temperature and Duration Effect on Microstructure Evolution during Copper Wafer Bonding”, Journal of Electronic Materials, 32(12), pp 1371-1374, 2003.
[13] K. N. Chen, C. S. Tan, A. Fan and R. Reif, “Morphology and bond strength of copper wafer bonding", Electrochemical and Solid-State Letters, 7(1), pp G14- G16, 2004.
[14] K. N. Chen, A. Fan, C. S. Tan, and R. Reif, “Contact Resistance Measurement of Bonded Copper Interconnects for Three-Dimensional Integration Technology”, IEEE Electron Devices Letters, 25(1), pp 10-12, 2004.
[15] Kuan-Neng Chen, Sang Hwui Lee, Paul S. Andry, Cornelia K. Tsang, Anna W. Topol, Yu-Ming Lin, JianQiang Lu, Albert M.Young, Meikei Ieong, and Wilfried Haensch, “Structure Design and Process Control for Cu Bonded Interconnects in 3D Integrated Circuits”, 2006 International Electron Devices Meeting (IEDM), pp. 367-370, San Francisco CA, Dec. 11-13, 2006.
[16] J. J. McMahon, J.-Q. Lu and R. J. Gutmann, “Wafer bonding of damascene-patterned metal/adhesive redistribution layers for via-first three-dimensional (3D) interconnect," Proceedings Electronic Components and Technology, 2005. ECTC ’05., Lake Buena Vista, FL, USA, 2005, pp. 331-336 Vol. 1, doi: 10.1109/ECTC.2005.1441287.
[17] R.J. Gutmann, J.J. McMahon, S. Rao, F. Niklaus, and J.- Q. Lu, “Wafer-Level Via-First 3D Integration with Hybrid-Bonding of Cu/BCB Redistribution Layers”, Proceedings of International Wafer-Level Packaging Congress (IWLPC), pp. 122-127, SMTA, Nov. 2-4, 2005.