AlphaGo 是否隱藏實力?看 DeepMind 團隊如何回應

作者 | 發布日期 2017 年 05 月 25 日 11:34 | 分類 AI 人工智慧 , Google line share Linkedin share follow us in feedly line share
AlphaGo 是否隱藏實力?看 DeepMind 團隊如何回應

前後兩次 AI 與人類的公開對弈,讓大家意識到人工智慧已不再是科幻電影的幻想。但驚歎 AlphaGo 出色戰績和表現同時,網上也出現不少意見指其實 AlphaGo 有意隱藏實力,故意讓人類輸得不難看。就筆者在烏鎮現場觀察,中國媒體似乎對該議題相當感興趣,多次向 DeepMind 團隊提出類似的問題。到底 AlphaGo 是否真的有自我意識並示弱?且看研究團隊如何回應。

AlphaGo 有意識隱藏實力?只是最大化獲勝機率

先前《AlphaGo 進步神速》的報導中提到,AlphaGo 能屢屢擊敗人類頂尖棋手,在於其先進的機器學習演算法,即策略網路和價值網路的結合分析,以對手的絕對勝利到 AlphaGo 的絕對勝利為標準,預測所有可行落子位置的結果再選擇最佳位置。因此對於 AlphaGo 是否有意識控制贏子數的疑惑,DeepMind 研究團隊在賽後解釋。

DeepMind 的聯合創始人兼 CEO Demis Hassabis 表示,AlphaGo 的目標總是將獲勝機率最大化放在第一位,它會透過尋找確定的搜索途徑實現最低風險的獲勝機會。

▲ David Silver。

DeepMind 研究科學家兼 AlphaGo 團隊負責人 David Silver 補充,簡單而言,AlphaGo 會將獲勝機率盡量擴大,以求在對弈中取勝,而進一步擴大勝出的距離(子數)是未來需加強的地方。但目前而言,AlphaGo 的行為會傾向為了取勝而放棄更多贏子數,只為了降低不能取勝的風險,即使是很小的差距仍會納入考慮(可理解為面對「贏 3 子,90% 勝率」和「贏 1/4 子,95% 勝率」兩種情況,AlphaGo 傾向選擇後者來降低風險)。

DeepMind:強大人工智慧階段尚需數十年發展

Demis Hassabis 在演講中提到圍棋不像象棋等遊戲靠計算,而是靠直覺,AlphaGo 明顯已展示出其具備一定創造力,能在預測落子位置時擁有類似人類棋手的直覺。不過,他認為 AlphaGo 在經過不斷強化學習訓練後,雖然可在圍棋這個領域實現類似的直覺,但始終與人類的自主意識有差別。

▲ Demis Hassabis。

他續稱,DeepMind 在 AI 應用上仍處於早期探索階段,即使是在演講中提及的醫療、新型藥物研製等領域也只是行業中的其中一小部分。要發展到強人工智慧階段,相信尚需數十年的發展。

(本文由 Unwire Pro 授權轉載)

延伸閱讀:

想請我們喝幾杯咖啡?

icon-tag

每杯咖啡 65 元

icon-coffee x 1
icon-coffee x 3
icon-coffee x 5
icon-coffee x

您的咖啡贊助將是讓我們持續走下去的動力

總金額共新臺幣 0
《關於請喝咖啡的 Q & A》